파이썬의 matplotlib 노트

파이썬의 matplotlib는 수치 데이터를 그래프로 효과적으로 표시해주는 API입니다. 이에 대해 간단한 활용 예시에 대한 코드를 기록해 둡니다.

import matplotlib.pyplot as plt

x = [1, 2, 3, 4, 5]
y = [1, 2, 3, 4, 5]

plt.scatter(x, y)

plt.show()

X축과 Y축에 대한 포인트 데이터를 표시하는 코드입니다. 결과는 다음과 같습니다.

그래프에서 포인트의 크기와 색상, 투명도를 지정하는 예제는 다음과 같습니다.

import matplotlib.pyplot as plt

x = [1, 2, 3, 4, 5]
y = [1, 2, 3, 4, 5]
s = [10, 20, 30, 40, 50]

plt.scatter(x = x, y = y, s = s, c = 'red', alpha=0.5)

plt.show()

결과는 다음과 같습니다.

다음은 꺽은선 그래프입니다.

import numpy as np
import matplotlib.pyplot as plt

x = np.arange(0, 10, 0.5)
y = np.sin(x)

plt.plot(x, y)
plt.show()

x축과 y축의 데이터는 4번과 5번 코드에서 정의합니다. 결과는 다음과 같습니다.

하나의 차트에 여러개의 그래프를 동시에 표시하고, 추가적으로 제목, 축이름 등을 표시하는 코드입니다.

import numpy as np
import matplotlib.pyplot as plt

x = np.arange(0, 10, 0.5)
y1 = np.sin(x)
y2 = np.cos(x)

plt.plot(x, y1, label="sin(x)")
plt.plot(x, y2, label="cos(x)", linestyle="--")

plt.xlabel("x")
plt.xlabel("y")

plt.title("sin & cos")
plt.legend()

plt.show()

3차원 차트의 경우 먼저 X, Y축에 대한 데이터와 이 X, Y를 변수로 하여 계산된 Z 값의 함수가 정의해야 합니다. 이렇게 정의된 X, Y, Z에 대한 3차원 그래프는 아래의 예제 코드를 통해 3차원 차트로 시각화할 수 있습니다.

import numpy as np
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt

X = np.arange(-5, 5, 0.25)
Y = np.arange(-5, 5, 0.25)
X, Y = np.meshgrid(X, Y)
Z = X**2 + Y**2

fig = plt.figure()
ax = fig.gca(projection='3d')
surf = ax.plot_wireframe(X, Y, Z, color='black')

plt.show()

여러개의 차트를 동시에 표시하는 경우입니다.

import matplotlib.pyplot as plt
import numpy as np

x = np.linspace(0, np.pi * 3, 100)
fig, axes = plt.subplots(2,2)

axes[0][0].plot(x, np.sin(x))
axes[0][1].plot(x, np.arccos(x))
axes[1][0].plot(x, np.cos(x))
axes[1][1].plot(x, np.arcsin(x))

plt.show()

아래는 차트를 그리는 스타일을 지정하고 범례를 표현하는 코드입니다.

import matplotlib.pyplot as plt
import numpy as np

x = np.arange(-10,10)
y = x**2

plt.plot(x, y, 
    linewidth=2, color='green', linestyle=':', 
    marker='*', markersize=10, markerfacecolor='yellow', markeredgecolor='red', 
    label='y=x^2')
   
plt.legend()

plt.show()

결과는 다음과 같습니다.

답글 남기기

이메일 주소는 공개되지 않습니다.