THREE.JS 퀵 레퍼런스 코드

Three.js를 이용한 개발 시 개인적으로 빠르게 참조하기 위해 작성한 글입니다.

three.js 기본 프로젝트 생성 (WebGL)

git clone https://github.com/GISDEVCODE/threejs-with-javascript-starter.git .

three.js 기본 프로젝트 생성 (WebGPU)

git clone https://github.com/GISDEVCODE/threejs-webgpu-with-javascript-starter.git .

R3F 기본 프로젝트 생성 (Javascript)

git clone https://github.com/GISDEVCODE/r3f-with-javascript-starter.git .

Shader 기본 프로젝트 생성 (Javascript)

git clone https://github.com/GISDEVCODE/shader-with-threejs-javascript-starter .

그림자 적용에 대한 코드

renderer.shadowMap.enabled = true;
renderer.shadowMap.type = THREE.VSMShadowMap;

const shadowLight = new THREE.DirectionalLight(0xffe79d, 0.7);
shadowLight.position.set(150, 220, 100);
shadowLight.target.position.set(0,0,0);
shadowLight.castShadow = true;
shadowLight.shadow.mapSize.width = 1024*10;
shadowLight.shadow.mapSize.height = 1024*10;
shadowLight.shadow.camera.top = shadowLight.shadow.camera.right = 1000;
shadowLight.shadow.camera.bottom = shadowLight.shadow.camera.left = -1000;
shadowLight.shadow.camera.far = 800;
shadowLight.shadow.radius = 5;
shadowLight.shadow.blurSamples = 5;
shadowLight.shadow.bias = -0.0002;

const cameraHelper = new THREE.CameraHelper(shadowLight.shadow.camera);
this._scene.add(cameraHelper);

island.receiveShadow = true;
island.castShadow = true;

지오메트리의 좌표 수정

const sphereGeom = new THREE.SphereGeometry(6 + Math.floor(Math.random() * 12), 8, 8);
const sphereGeomPosition = sphereGeom.attributes.position;
for (var i = 0; i < sphereGeomPosition.count; i++) {
    sphereGeomPosition.setY(i, sphereGeomPosition.getY(i) + Math.random() * 4 - 2);
    sphereGeomPosition.setX(i, sphereGeomPosition.getX(i) + Math.random() * 3 - 1.5);
    sphereGeomPosition.setZ(i, sphereGeomPosition.getZ(i) + Math.random() * 3 - 1.5);
}

sphereGeom.computeVertexNormals();
sphereGeom.attributes.position.needsUpdate = true;

지오메트리에 사용자 정의 데이터 주입

// 주입
const waves = [];
const waterGeoPositions = waterGeo.attributes.position;
for (let i = 0; i < waterGeoPositions.count; i++) {
    waves[i] = Math.random() * 100;
}
waterGeo.setAttribute("wave", new THREE.Float32BufferAttribute(waves, 1));

// 읽기
const waves = sea.geometry.attributes.wave;

for(let i=0; i<positions.count; i++) {
    const v = waves.getX(i);
}

안개 설정 코드

scene.fog = new THREE.Fog("rgba(54,219,214,1)", 1000, 1400);

OrbitControls 관련 코드

const controls = new OrbitControls(this._camera, this._divContainer);
controls.minPolarAngle = -Math.PI / 2;
controls.maxPolarAngle = Math.PI / 2 + 0.1;
controls.enableZoom = true;
controls.enablePan = false;
controls.autoRotate = true;
controls.autoRotateSpeed = 0.2;

this._controls = controls;

this._controls.update();

Object3D의 MBR 얻기

const board = this._scene.getObjectByName("Board");
const box = new THREE.Box3().setFromObject(board);
console.log(box);

Mesh의 월드좌표에 대한 position 얻기

mesh.updateMatrixWorld();

const worldPos = new THREE.Vector3();
worldPos.setFromMatrixPosition(mesh.matrixWorld);

Faked Shadow

그림자를 위한 매시에 대한 재질 속성 지정이 핵심. 참고로 shadow에 대한 이미지는 투명 이미지가 아님. 즉, 배경색이 하얀색인 이미지임.

const shadow = new THREE.TextureLoader().load( 'models/gltf/ferrari_ao.png' );

const mesh = new THREE.Mesh(
    new THREE.PlaneGeometry( 0.655 * 4, 1.3 * 4 ),
    new THREE.MeshBasicMaterial( {
        map: shadow, 
        blending: THREE.MultiplyBlending, 
        toneMapped: false, 
        transparent: true
    } )
);
mesh.rotation.x = - Math.PI / 2;
mesh.renderOrder = 2;
carModel.add( mesh );

텍스쳐 이미지 품질 올리기

샘플링 횟수를 올리는 것으로 속도는 느려질 수 있으나 품질은 향상됨

texture.anisotropy = renderer.capabilities.getMaxAnisotropy();

async 리소스 로딩

async function init() {
    const rgbeLoader = new RGBELoader().setPath('textures/equirectangular/');
    const gltfLoader = new GLTFLoader().setPath('models/gltf/DamagedHelmet/glTF/');

    const [texture, gltf] = await Promise.all([
        rgbeLoader.loadAsync( 'venice_sunset_1k.hdr' ),
        gltfLoader.loadAsync( 'DamagedHelmet.gltf' ),
    ]);
}

init().catch(function(err) {
    console.error(err);
});

텍스쳐를 Canvas로 후다닥 만들기

const canvas = document.createElement( 'canvas' );
canvas.width = 1;
canvas.height = 32;

const context = canvas.getContext( '2d' );
const gradient = context.createLinearGradient( 0, 0, 0, 32 );
gradient.addColorStop( 0.0, '#ff0000' );
gradient.addColorStop( 0.5, '#00ff00' );
gradient.addColorStop( 1.0, '#0000ff' );
context.fillStyle = gradient;
context.fillRect( 0, 0, 1, 32 );

const sky = new THREE.Mesh(
	new THREE.SphereGeometry( 10 ),
	new THREE.MeshBasicMaterial( { map: new THREE.CanvasTexture( canvas ), side: THREE.BackSide } )
);
scene.add( sky );

GLTF 파일 로딩

import { GLTFLoader } from "../examples/jsm/loaders/GLTFLoader.js"

const loader = new GLTFLoader();
loader.load("./data/ring.glb", gltf => {
    const object = gltf.scene;
    this._scene.add(object);
});    

InstancedMesh

const mesh = new THREE.InstancedMesh(geometry, material, 10000)

const matrix = new THREE.Matrix4()
const dummy = new THREE.Object3D()
 
for(let i = 0; i < 10000; i++) {
  mesh.getMatrixAt(i, matrix)
  matrix.decompose(dummy.position, dummy.rotation, dummy.scale)
  
  dummy.rotation.x = Math.random()
  dummy.rotation.y = Math.random()
  dummy.rotation.z = Math.random()

  dummy.updateMatrix()

  mesh.setMatrixAt(i, dummy.matrix)
  mesh.setColorAt(i, new THREE.Color(Math.random() * 0xffffff)
}

mesh.instanceMatrix.needsUpdate()

Image 기반 광원(IBL)

import { RGBELoader } from 'three/examples/jsm/Addons.js'

...

new RGBELoader().setPath("./").load("pine_attic_2k.hdr", (data) => {
  data.mapping = THREE.EquirectangularReflectionMapping;
  // this.scene.background = data;
  // this.scene.backgroundBlurriness = 0.6;
  this.scene.environment = data;
})

GLTF / GLB 파일 로딩

import { GLTFLoader, OrbitControls } from "three/addons/Addons.js"

...

const loader = new GLTFLoader();
loader.load(
  "fileName.glb",
  (gltf) => {
    this._scene.add( gltf.scene );    
  },
  (xhr) => { console.log( ( xhr.loaded / xhr.total * 100 ) + "% loaded" ); },
  (error) => { console.log( "An error happened" ); }
);

Object3D를 빌보드로 만들기

this._mesh.quaternion.copy(this._camera.quaternion );
// or
this._mesh.rotation.setFromRotationMatrix( this._camera.matrix );

FPS 제한하기

requestAnimationFrame로 렌더링을 수행하면 최대한 많은 프레임을 생성하기 됨. 아래는 원하는 프레임수로 제한하기 위해 다음 코드로 30 프레임 제한입니다.

  _elapsedTime = 0;
  _fps = 1 / 60
  render() {
    const delta = this._clock.getDelta();
    this.update(delta);
    this._elapsedTime += delta;
    
    if (this._elapsedTime >= (this._fps)) {
      this._stats.begin();
      this._renderer.render(this._scene, this._camera);
      this._stats.end();
      this._elapsedTime %= this._fps;
    }

    requestAnimationFrame(this.render.bind(this));
  }

화면 좌표를 월드 좌표로 변환하는 함수

// 스크린 좌표 -> 월드 좌표 변환 함수
screenToWorld(screenX, screenY, ndcZ = 0.5) { // ndcZ=0.5로 설정 (카메라 방향)
  // 1. 화면 픽셀 좌표를 정규화된 디바이스 좌표(NDC)로 변환
  const ndcX = (screenX / this._divContainer.clientWidth) * 2 - 1;
  const ndcY = -(screenY / this._divContainer.clientHeight) * 2 + 1;

  // 2. NDC를 3D 공간의 Ray로 변환
  const vector = new THREE.Vector3(ndcX, ndcY, ndcZ);
  vector.unproject(this._camera);

  // 3. Ray를 따라 월드 좌표를 계산
  return vector;
}

screenToWorldAtZ(screenX, screenY, targetZ = 0) {
  // 1. 화면 픽셀 좌표 -> NDC 변환
  const ndcX = (screenX / this._divContainer.clientWidth) * 2 - 1;
  const ndcY = -(screenY / this._divContainer.clientHeight) * 2 + 1;

  // 2. NDC -> Ray 생성
  const raycaster = new THREE.Raycaster();
  const vector = new THREE.Vector2(ndcX, ndcY);
  raycaster.setFromCamera(vector, this._camera);

  // 3. Ray와 z=targetZ 평면의 교차점 계산
  const direction = raycaster.ray.direction;
  const origin = raycaster.ray.origin;
  const t = (targetZ - origin.z) / direction.z;

  const worldPoint = origin.clone().add(direction.multiplyScalar(t));
  return worldPoint;
}

모델을 화면 중심에 표시하기

_zoomFix(model, distanceFactor = 1.5) {
  const box = new THREE.Box3().setFromObject(model);
  const center = box.getCenter(new THREE.Vector3());

  model.position.sub(center);

  const size = box.getSize(new THREE.Vector3());
  const maxDimension = Math.max(size.x, size.y, size.z);
  const cameraDistance = maxDimension * distanceFactor;
  this._camera.position.set(0, 0, cameraDistance);
  this._camera.lookAt(this._scene.position);
}

모델의 특정 페이스에 대한 법선 벡터 구하기

_getNormal(mesh, faceIndex) {
  const normalAttribute = mesh.geometry.getAttribute("normal");
  const index = mesh.geometry.index;
  const faceStartIndex = faceIndex * 3;

  const vertexIndexA = index.getX(faceStartIndex);
  const vertexIndexB = index.getX(faceStartIndex + 1);
  const vertexIndexC = index.getX(faceStartIndex + 2);

  const normalA = new THREE.Vector3();
  const normalB = new THREE.Vector3();
  const normalC = new THREE.Vector3();
  const faceNormal = new THREE.Vector3();

  normalA.fromBufferAttribute(normalAttribute, vertexIndexA);
  normalB.fromBufferAttribute(normalAttribute, vertexIndexB);
  normalC.fromBufferAttribute(normalAttribute, vertexIndexC);

  faceNormal.addVectors(normalA, normalB).add(normalC).divideScalar(3).normalize();

  return faceNormal;
}

어떤 위치에서 매시에 가장 가까운 매시 표면의 위치를 얻는 코드

아래 함수의 point 파라메터는 어떤 위치이고 mesh 파라메터가 대상 메시입니다. point에서 가장 가까운 매시 표면의 좌표가 변환됩니다.

findClosestPointOnMesh(/* Vector3 */ point, /* Mesh */ mesh) {
  const geometry = mesh.geometry;
  const vertices = geometry.attributes.position;
  const indices = geometry.index ? geometry.index.array : null;

  let closestPoint = new THREE.Vector3();
  let minDistance = Infinity;

  const localPoint = mesh.worldToLocal(point);

  if (indices) {
    for (let i = 0; i < indices.length; i += 3) {
      const a = new THREE.Vector3().fromBufferAttribute(vertices, indices[i]);
      const b = new THREE.Vector3().fromBufferAttribute(vertices, indices[i + 1]);
      const c = new THREE.Vector3().fromBufferAttribute(vertices, indices[i + 2]);

      const tempPoint = new THREE.Vector3();
      const triangle = new THREE.Triangle(a, b, c);
      triangle.closestPointToPoint(localPoint, tempPoint);

      const distance = localPoint.distanceTo(tempPoint);
      if (distance < minDistance) {
        minDistance = distance;
        closestPoint.copy(tempPoint);
      }
    }
  } else {
    for (let i = 0; i < vertices.count; i += 3) {
      const a = new THREE.Vector3().fromBufferAttribute(vertices, i);
      const b = new THREE.Vector3().fromBufferAttribute(vertices, i + 1);
      const c = new THREE.Vector3().fromBufferAttribute(vertices, i + 2);

      const tempPoint = new THREE.Vector3();
      const triangle = new THREE.Triangle(a, b, c);
      triangle.closestPointToPoint(localPoint, tempPoint);

      const distance = localPoint.distanceTo(tempPoint);
      if (distance < minDistance) {
        minDistance = distance;
        closestPoint.copy(tempPoint);
      }
    }
  }

  return mesh.localToWorld(closestPoint);
}

아래는 위의 함수가 적용된 실행 화면인데, 노란색 포인트 위치가 임의의 위치(point 파라메터)이고 빨간색이 함수의 결과 좌표입니다.

DataTexture를 이용한 Raw 데이터로 텍스쳐 생성

    const width = 256;
    const height = 256;
    const size = width * height;
    const data = new Uint8Array(4 * size); // RGBA 데이터

    for (let i = 0; i < size; i++) {
      const stride = i * 4;

      data[stride] = Math.floor(Math.random() * 256);     // R
      data[stride + 1] = Math.floor(Math.random() * 256); // G
      data[stride + 2] = Math.floor(Math.random() * 256); // B
      data[stride + 3] = 255;                             // A
    }

    const texture = new THREE.DataTexture(data, width, height);
    texture.needsUpdate = true;

    const material = new THREE.MeshBasicMaterial({ map: texture });
    const mesh = new THREE.Mesh(new THREE.PlaneGeometry(4, 4), material);
    this._scene.add(mesh);

three.js, 뒤에서 보여지는 물체 감추기

실내와 같은 장면을 3D로 살펴볼때 벽처럼 막힌 부분이 장면의 시인성을 방해하는 경우가 있습니다. 아래가 그러한 경우입니다.

위의 영상에서 보이는 것처럼 실내의 물체를 벽이 가리는 문제가 있습니다. 이런 문제점을 해결하기 위해 뒤에서 보여지는 물체(벽 등)를 잠시 보이지 않도록 해주는 기능이 필요한데요. 아래는 그에 대한 결과입니다.

이에 대한 기능을 컴포넌트로 만든 것이 BackViewHiderControls 입니다. 관련 API는 다음과 같습니다.

먼저 컨트롤러 객체를 생성합니다.

_setupControls() {
  ...

  const backViewHider = new BackViewHiderControls(this._camera);
  this._backViewHider = backViewHider;

  ...
}

그리고 매 프레임마다 호출되는 update 매서드에서 다음 코드를 입력합니다.

update() {
  ....

  this._backViewHider.updateOnFrame();
}