특성값 2개를 입력하여 3가지로 분류하는 신경망

이 글에서 소개하고 있는 소스코드는 사이토 고키가 저술한 “Deep Learning from Scratch”의 첫장에서 소개하고 있는 신경망입니다. 한국어판으로는 한빛미디어의 “밑바닥부터 시작하는 딥러닝2″로도 보실 수 있습니다. 해당 도서의 원저자의 허락 하에 글을 올립니다. 특히 공간상의 좌표와 속성값들에 대한 분류에 대한 내용인지라 GIS 분야에서 흔하게 활용될 수 있는 내용이라고 생각됩니다. 보다 자세한 내용은 해당도서를 추천드립니다.

공간 상의 (x,y)에 대한 하나의 지점에 대해서.. 가재, 물방개, 올챙이인 3가지 종류의 식생이 분포하고 있는 생태계가 있다고 합시다. 즉, 입력되는 특성값은 2개일때 3개 중 한개를 결정해야 합니다. 다시 말해, 이미 채집한 데이터가 있고, 이 데이터를 이용해 예측 모델을 훈련시킬 것이며, 훈련된 모델을 이용하면 임이의 (x,y) 위치에 대해 존재하는 식생이 무엇인지를 예측하고자 합니다. 그럼 먼저 예측 모델을 훈련할때 사용할 채집 데이터가 필요한데, 아래의 load_spiral_data 함수가 이러한 채집 데이터를 생성해 줍니다. 아래의 코드는 load_spiral_data 함수를 이용해 채집 데이터를 생성하고 시각화합니다.

결과는 아래와 같습니다.

훈련용 데이터가 준비되었으므로, 이제 예측 모델에 대한 신경망에 대한 코드를 살펴보겠습니다. 아래는 은닉층이 1개인 신경망에 대한 클래스입니다. 은닉층이 1개이구요. 이 클래스의 생성자에 대한 인자는 입력되는 특성값의 개수(input_size)와 은닉층의 뉴런 개수(hidden_size) 그리고 분류 결과 개수(output_size)입니다.

신경망의 뉴런값과 가중치 그리고 편향에 대한 연산을 위해 Affine 클래스가 사용됬으며, 신경망의 기반이 되는 선형 회귀에 비선형 회귀 특성을 부여하는 활성화함수로 Sigmoid 클래스가 사용되었습니다. 아울러 3개 이상의 출력결과를 확률로 해석하고 이를 기반으로 손실값을 계산할 수 있는 Softmax와 Cross Entropy Error를 하나의 합친 SoftmaxWithLoss 클래스가 사용되었습니다.

먼저 Affine, Sigmoid 클래스의 코드는 다음과 같습니다.

그리고 SoftmaxWithLoss 클래스는 다음과 같습니다.

우의 클래스는 Softmax 연산과 Cross Entropy Error 연산을 각각 softmax와 cross_entropy_error 함수를 통해 처리하고 있습니다. 이 두 함수는 아래와 같습니다.

학습 데이터와 모델까지 준비되었으므로, 이제 실제 학습에 대한 코드를 살펴보겠습니다. 먼저 학습을 위한 하이퍼파라메터 및 모델생성 그리고 기타 변수값들입니다.

다음은 실제 학습 수행 코드입니다.

출력값으로써 매 학습 단계마다 손실값이 줄어드는 것을 확인할 수 있습니다.

아래는 위의 학습이 완료되면 그 결과를 시각화해주는 코드입니다.

결과는 다음과 같습니다.

이제 이 학습된 모델을 이용해 새로운 입력 데이터를 분류하고 이에 대한 결과를 효과적으로 시각해 주는 코드는 아래와 같습니다.

결과는 아래와 같습니다.

다중분류를 위한 대표적인 손실함수, torch.nn.CrossEntropyLoss

딥러닝의 많은 이론 중 가장 중요한 부분이 손실함수와 역전파입니다. PyTorch에서는 다양한 손실함수를 제공하는데, 그 중 torch.nn.CrossEntropyLoss는 다중 분류에 사용됩니다. torch.nn.CrossEntropyLoss는 nn.LogSoftmax와 nn.NLLLoss의 연산의 조합입니다. nn.LogSoftmax는 신경망 말단의 결과 값들을 확률개념으로 해석하기 위한 Softmax 함수의 결과에 log 값을 취한 연산이고, nn.NLLLoss는 nn.LogSoftmax의 log 결과값에 대한 교차 엔트로피 손실 연산(Cross Entropy Loss|Error)입니다.

Softmax와 교차 엔트로피 손실 연산에 대한 각각의 설명은 아래와 같습니다.

활성화 함수(Activation Function)

손실함수(Loss Function)

참고로 nn.NLLLoss의 구현 코드는 아래와 같습니다.

물론 PyTorch에서도 torch.nn.NLLLoss를 통해 위와 동일한 기능을 제공합니다. 결과적으로 Softmax의 Log 결과를 Cross Entropy Loss 값의 결과를 얻기 위해 3가지 방식이 존재하는데, 아래와 같습니다.

위의 세가지 방식 중 torch.nn.CrossEntropyLoss처럼 연산을 한번에 처리하는 것이 수식이 간소화되어 역전파가 더 안정적으로 이루지므로 실제 사용에 권장됩니다.

torch.nn.CrossEntropyLoss를 이용하여 손실값을 구하는 것에 초점을 맞춰보면.. 먼저 torch.nn.CrossEntropyLoss의 수식은 다음과 같습니다.

    $$loss(x,class)=-\log\biggl(\frac{\exp(x[class])}{\sum_{j}{\exp(x[j])}}\biggr)=-x[class]+\log\biggl(\sum_{j}{\exp(x[j])}}\biggr)$$

위의 수식을 살펴보면 앞서 언급한 것처럼 Softmax와 Log처리 및 Cross Entropy Loss 연산의 조합이라는 것을 알수 있습니다.

torch.nn.CrossEntropyLoss를 코드를 통해 설명하면… 예를들어 신경망 말단에서 총 10개의 값(앞서 언급한 x값)이 출력되었고, 실제 레이블 값(앞서 언급한 y 또는 class)은 1일때에 손실값을 구하는 코드는 아래와 같습니다.

참고로 위의 코드에서 사용된 nn.CrossEntropyLoss의 수식을 알고 있으므로 nn.CrossEntropyLoss을 사용하지 않고 직접 손실값을 계산한다면 다음과 같습니다.

손실값이 필요할 때는 신경망의 학습인데, 학습에서 데이터는 GPU 자원을 최대한 활용하기 위해 배치 단위로 처리됩니다. 즉, 앞서 언급한 것처럼 1개 단위가 아닌 2개 이상의 데이터가 한꺼번에 들어온다는 것입니다. 이에 대한 처리에 대한 예는 다음 코드와 같습니다.

위의 코드를 nn.CrossEntropyLoss()를 사용하지 않고 계산한다면 다음 코드와 같구요.

즉, 배치 처리에 대한 손실값은 배치를 구성하는 각 데이터의 손실값들의 평균이라는 점을 확인할 수 있습니다.