[PyQt5] MatplotLib의 차트를 Widget으로 사용하기

PyQt에서 차트를 위젯으로 사용하기 위해 코드입니다. 먼저 실행 결과는 다음과 같습니다.

하단에 컴보박스를 통해 2가지 항목을 선택할 수 있는데요. 항목을 선택할때마다 해당되는 항목의 그래프가 상단에 표시됩니다.

먼저 이를 위한 UI 구성을 위해 아래와 같은 코드를 작성합니다.

import sys
import numpy as np
from PyQt5.QtWidgets import *
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas

class MyWindow(QWidget):
    def __init__(self):
        super().__init__()
        self.initUI()

        self.setLayout(self.layout)
        self.setGeometry(200, 200, 800, 600)

    def initUI(self):
        self.fig = plt.Figure()
        self.canvas = FigureCanvas(self.fig)
        
        layout = QVBoxLayout()
        layout.addWidget(self.canvas)

        cb = QComboBox()
        cb.addItem('Graph1')
        cb.addItem('Graph2')
        cb.activated[str].connect(self.onComboBoxChanged)
        layout.addWidget(cb)

        self.layout = layout

        self.onComboBoxChanged(cb.currentText())

    def onComboBoxChanged(self, text):
        if text == 'Graph1':
            self.doGraph1()
        elif text == 'Graph2':
            self.doGraph2()

    def doGraph1(self):
        ....

    def doGraph2(self):
        ....
            
if __name__ == "__main__":
    app = QApplication(sys.argv)
    window = MyWindow()
    window.show()
    app.exec_()

Qt5에서 Matplot을 사용하기 위해서는 matplotlib.backends.backend_qt5agg 패이지의 FigureCanvasQTAgg라는 이름의 위젯 클래스가 필요하다는 것을 알 수 있습니다. MyWindow 클래스의 doGraph1과 doGraph2 함수의 코드가 핵심인데, 그 내용은 아래와 같습니다.

   def doGraph1(self):
        x = np.arange(0, 10, 0.5)
        y1 = np.sin(x)
        y2 = np.cos(x)
        
        self.fig.clear()

        ax = self.fig.add_subplot(111)
        ax.plot(x, y1, label="sin(x)")
        ax.plot(x, y2, label="cos(x)", linestyle="--")
        
        ax.set_xlabel("x")
        ax.set_xlabel("y")
        
        ax.set_title("sin & cos")
        ax.legend()
        
        self.canvas.draw()

    def doGraph2(self):
        X = np.arange(-5, 5, 0.25)
        Y = np.arange(-5, 5, 0.25)
        X, Y = np.meshgrid(X, Y)
        Z = X**2 + Y**2
        
        self.fig.clear()
        
        ax = self.fig.gca(projection='3d')
        ax.plot_wireframe(X, Y, Z, color='black')

        self.canvas.draw() 

doGraph2 함수에 대한 실행 결과는 다음과 같습니다. 물론 이 함수의 실행은 컴보박스의 항목 중 Graph2를 선택했을때 실행됩니다.

참고로 이 글의 차트는 아래의 글을 참고로 하여 작성하였습니다.

파이썬의 matplotlib 노트

[PyQt5] 메인 윈도우와 다이얼로그 연동

메인 윈도우에서 대화상자를 열고, 대화상자에서 입력한 값을 메인 윈도우에 표시하고하는 경우에 대한 설명입니다. UI 라이브러리는 PyQt5를 사용했습니다. 먼저 메인 모듈에 대한 코드입니다. 참고로 이글은 PyQt5에 대한 최소한의 기초 내용을 파악하고 있는 개발자를 대상으로 합니다.

import sys
from MainWindow import MainWindow
from PyQt5.QtWidgets import *

if __name__ == '__main__':
    app = QApplication(sys.argv)
    win = MainWindow()
    win.show()
    sys.exit(app.exec_())

위의 코드에서 메인 윈도우는 MainWindow.py 파일에 정의되어 있으며, 코드는 다음과 같습니다.

import sys
from PyQt5.QtWidgets import *
from PyQt5.QtCore import *
from SubWindow import SubWindow

class MainWindow(QMainWindow):
    def __init__(self):
        super().__init__()
        self.initUI()

    def initUI(self):
        self.setWindowTitle('Main Window')
        self.setGeometry(100, 100, 300, 200)

        layout = QVBoxLayout()
        layout.addStretch(1)

        label = QLabel("미지정")
        label.setAlignment(Qt.AlignCenter)
        font = label.font()
        font.setPointSize(30)
        label.setFont(font)
        self.label = label

        btn = QPushButton("값 얻어오기")
        btn.clicked.connect(self.onButtonClicked)

        layout.addWidget(label)
        layout.addWidget(btn)

        layout.addStretch(1)

        centralWidget = QWidget()
        centralWidget.setLayout(layout)
        self.setCentralWidget(centralWidget)

    def onButtonClicked(self):
        win = SubWindow()
        r = win.showModal()

        if r:
            text = win.edit.text()
            self.label.setText(text)

    def show(self):
        super().show()

위의 메인 윈도우는 아래와 같은 UI를 표시합니다.

“값 얻어오기” 버튼을 클릭하면 대화창을 표시되며, 표시된 대화창에서 텍스트를 입력하고 대화창의 “확인” 버튼을 클릭하면 대화창에서 입력한 텍스트값을 메인 윈도우의 라벨 위젯에 표시하게 됩니다. 대화창에 대한 코드 파일은 SubWindow.py이며 다음과 같습니다.

import sys
from PyQt5.QtWidgets import *

class SubWindow(QDialog):
    def __init__(self):
        super().__init__()
        self.initUI()

    def initUI(self):
        self.setWindowTitle('Sub Window')
        self.setGeometry(100, 100, 200, 100)

        layout = QVBoxLayout()
        layout.addStretch(1)

        edit = QLineEdit()
        font = edit.font()
        font.setPointSize(20)
        edit.setFont(font)
        self.edit = edit

        subLayout = QHBoxLayout()
        
        btnOK = QPushButton("확인")
        btnOK.clicked.connect(self.onOKButtonClicked)

        btnCancel = QPushButton("취소")
        btnCancel.clicked.connect(self.onCancelButtonClicked)

        layout.addWidget(edit)
        
        subLayout.addWidget(btnOK)
        subLayout.addWidget(btnCancel)
        layout.addLayout(subLayout)

        layout.addStretch(1)

        self.setLayout(layout)

    def onOKButtonClicked(self):
        self.accept()

    def onCancelButtonClicked(self):
        self.reject()

    def showModal(self):
        return super().exec_()

아래는 메인 윈도우에서 위의 코드에 대한 대화창을 표시한 뒤 사용자가 “하이! PyQt5″텍스트를 입력한 화면입니다.

위의 화면에서 닫기 버튼을 클릭하면 창이 닫히고 메인 윈도우에 대화창에서 입력한 텍스트가 표시되는데, 아래와 같습니다.

선형회귀모델에 대한 PyTorch를 이용한 두가지 접근

아래와 같은 식을 회귀하는 모델을 구하는 두가지 접근을 PyTorch로 살펴본다.

    $$y=1+5a+7b$$

즉, 입력값(a, b)에 대한 출력값 y가 100개 주어지고, 이 데이터를 통해 상수항인 1과 계수 5, 7을 구하는 것이 문제다. 물론 y에는 오차가 반영되어 있다. 첫번째 접근은 다음과 같다. 손실함수는 평균최소제곱을, 역전파를 통한 최적값 수렴을 위한 기울기를 구해 반영한 학습률은 0.01을 사용했다. 아래의 코드의 경우 기울기를 구하기 위한 방법을 PyTorch의 역전파를 이용한 것이다.

import torch
from matplotlib import pyplot as plt

weight_true = torch.Tensor([1,5,7]) # y = 1 + 5a + 7b
X = torch.cat([torch.ones(100,1),torch.randn(100,2)], 1)
y = torch.mv(X, weight_true) + torch.randn(100)
weight = torch.randn(3, requires_grad=True)

lr = 0.01

losses = []

for epoch in range(1000):
    weight.grad = None

    y_pred = torch.mv(X, weight)
    loss = torch.mean((y - y_pred)**2)
    loss.backward()

    weight.data = weight.data - lr*weight.grad.data

    losses.append(loss.item())

print(weight)

plt.plot(losses)
plt.show()

두번째 접근은 다음과 같다. 앞서 직접 하나 하나 개발자가 지정했던 것들에 대한 모듈을 사용한 경우이다.

import torch
from torch import nn, optim
from matplotlib import pyplot as plt

weight_true = torch.Tensor([1,5,7]) # y = 1 + 5a + 7b
X = torch.cat([torch.ones(100,1),torch.randn(100,2)], 1)
y = torch.mv(X, weight_true) + torch.randn(100)

net = nn.Linear(in_features=3, out_features=1, bias=False)
optimizer = optim.SGD(net.parameters(), lr=0.01)
loss_fn = nn.MSELoss()

losses = []

for epoch in range(1000):
    optimizer.zero_grad()

    y_pred = net(X)
    loss = loss_fn(y_pred.view_as(y), y)
    loss.backward()

    optimizer.step()

    losses.append(loss.item())

print(net.weight)

plt.plot(losses)
plt.show()

두 경우 모두 실행하면 아래와 같은 손실값에 대한 그래프와 추론된 상수와 두계수 값이 콘솔에 출력된다.

tensor([0.9295, 4.9402, 7.0627], requires_grad=True)

함수들에 대한 그래프 시각화

선형 함수에 대한 정의와 그래프 시각화는 다음 코드와 같다.

import numpy as np
import matplotlib.pylab as plt

def identity_func(x):
    return x

x = np.arange(-10, 10, 0.01)
plt.plot(x, identity_func(x), linestyle='-', label="identity")
plt.ylim(-10, 10)
plt.legend()
plt.show() 

결과는 다음과 같다.

기울기와 y절편을 고려한 선형 함수의 정의는 다음과 같다.

import numpy as np
import matplotlib.pylab as plt
  
def linear_func(x):
    return 2 * x + 1 
 
x = np.arange(-10, 10, 0.01)
plt.plot(x, linear_func(x), linestyle='-', label="linear_func")
plt.ylim(-10, 10)
plt.legend()
plt.show() 

결과는 다음과 같다.

계단함수에 대한 정의는 다음과 같다.

import numpy as np
import matplotlib.pylab as plt
 
def binarystep_func(x):
    return (x>=0)*1
 
x = np.arange(-10, 10, 0.01)
plt.plot(x, binarystep_func(x), linestyle='-', label="binarystep_func")
plt.ylim(-5, 5)
plt.legend()
plt.show() 

결과는 다음과 같다.

로지스틱(Logistic) 또는 시그모이드(Sigmoid)라고 불리는 함수 정의는 다음과 같다.

import numpy as np
import matplotlib.pylab as plt

def softstep_func(x):
    return 1 / (1 + np.exp(-x))

x = np.arange(-10, 10, 0.01)
plt.plot(x, softstep_func(x), linestyle='-', label="softstep_func")
plt.ylim(0, 1)
plt.legend()
plt.show()     

결과는 다음과 같다.

TanH 함수 정의 다음과 같다.

import numpy as np
import matplotlib.pylab as plt
 
def tanh_func(x):
    return np.tanh(x)
 
x = np.arange(-10, 10, 0.01)
plt.plot(x, tanh_func(x), linestyle='-', label="tanh_func")
plt.ylim(-1, 1)
plt.legend()
plt.show()     

그래프는 다음과 같다.

ArcTan 함수 정의는 다음과 같다.

import numpy as np
import matplotlib.pylab as plt

def arctan_func(x):
    return np.arctan(x)
 
x = np.arange(-10, 10, 0.01)
plt.plot(x, arctan_func(x), linestyle='-', label="arctan_func")
plt.ylim(-1.5, 1.5)
plt.legend()
plt.show()     

그래프는 다음과 같다.

Soft Sign 함수는 다음과 같다.

import numpy as np
import matplotlib.pylab as plt
 
def softsign_func(x):
    return x / ( 1+ np.abs(x) )
 
x = np.arange(-10, 10, 0.01)
plt.plot(x, softsign_func(x), linestyle='-', label="softsign_func")
plt.ylim(-1, 1)
plt.legend()
plt.show()     

그래프는 다음과 같다.

ReLU(Rectified Linear Unit) 함수는 다음과 같다.

import numpy as np
import matplotlib.pylab as plt
 
def relu_func(x):
    return (x>0)*x
 
x = np.arange(-10, 10, 0.01)
plt.plot(x, relu_func(x), linestyle='-', label="relu_func")
plt.ylim(-1, 11)
plt.legend()
plt.show()     

결과는 다음과 같다.

Leaky ReLU 함수는 다음과 같다.

import numpy as np
import matplotlib.pylab as plt
 
def leakyrelu_func(x, alpha=0.1):
    return (x>=0)*x + (x<0)*alpha*x
 
x = np.arange(-10, 10, 0.01)
plt.plot(x, leakyrelu_func(x), linestyle='-', label="leakyrelu_func")
plt.ylim(-2, 11)
plt.legend()
plt.show()   

결과는 다음과 같다.

ELU(Exponential Linear Unit) 함수는 다음과 같다.

def elu_func(x, alpha=0.9):
    return (x>=0)*x + (x<0)*alpha*(np.exp(x)-1)
 
x = np.arange(-10, 10, 0.01)
plt.plot(x, elu_func(x), linestyle='-', label="elu_func")
plt.ylim(-2, 11)
plt.legend()
plt.show()    

결과는 다음과 같다.

TreLU 함수는 다음과 같다.

import numpy as np
import matplotlib.pylab as plt
 
def trelu_func(x, thres=2):
    return (x>thres)*x
 
x = np.arange(-10, 10, 0.01)
plt.plot(x, trelu_func(x), linestyle='-', label="trelu_func")
plt.ylim(-2, 11)
plt.legend()
plt.show()     

결과는 다음과 같다.

SoftPlus 함수는 다음과 같다.

import numpy as np
import matplotlib.pylab as plt
 
def softplus_func(x):
    return np.log( 1 + np.exp(x) )
 
x = np.arange(-10, 10, 0.01)
plt.plot(x, softplus_func(x), linestyle='-', label="softplus_func")
plt.ylim(-1, 11)
plt.legend()
plt.show()     

결과는 다음과 같다.

Bent identity 함수는 다음과 같다.

import numpy as np
import matplotlib.pylab as plt
 
def bentidentity_func(x):
    return (np.sqrt(x*x+1)-1)/2+x

x = np.arange(-10, 10, 0.01)
plt.plot(x, bentidentity_func(x), linestyle='-', label="bentidentity_func")
plt.ylim(-6, 11)
plt.legend()
plt.show()

결과는 다음과 같다.

Gaussian 함수는 다음과 같다.

import numpy as np
import matplotlib.pylab as plt
 
def gaussian_func(x):
    return np.exp(-x*x)
 
x = np.arange(-10, 10, 0.01)
plt.plot(x, gaussian_func(x), linestyle='-', label="gaussian_func")
plt.ylim(-0.5, 1.5)
plt.legend()
plt.show()

결과는 다음과 같다.