상관관계 조사(Correlation Surveying)

상관관계는 특정 특성에 대해 다른 특성들이 얼마나 영향을 주는지에 대한 척도라고 할 수 있습니다. 가장 흔히 사용되는 상관관계 조사는 표준 상관계수(Standard Correlation Coefficient)로 판다스의 corr 매서드를 통해 쉽게 얻을 수 있습니다.

글의 진행을 위해 사용한 샘플 데이터에 대한 소개는 아래 글을 참고하기 바랍니다.

분석가 관점에서 데이터를 개략적으로 살펴보기

아래의 코드는 샘플 데이터의 특성 중 ring_cnt에 영향을 주는 다른 특성의 표준 상관계수를 구해 출력합니다.

import pandas as pd

raw_data = pd.read_csv('./datasets/datasets_1495_2672_abalone.data.csv', 
    names=['sex', 'tall', 'radius', 'height', 'weg1', 'weg2', 'weg3', 'weg4', 'ring_cnt'])

corr_matrix = raw_data.corr()
print(corr_matrix["ring_cnt"].sort_values(ascending=False))

결과는 다음과 같습니다.

표준상관계수는 특성간의 선형적인 관계를 추출해줍니다. 즉, 선형적으로 비례하면 기울기 1에 가깝고 반비례하면 기울기 -1에 가깝습니다. 선형적으로 관계가 약하면 0에 가깝게 됩니다. 위의 결과를 보면 ring_cnt 특성 중 weg4가 가장 큰 선형 관계를 가지지만 다른 특성 역시 비슷한 선형적 관계를 가지고 있습니다.

아래의 코드처럼 상관관계 조사를 위해 각 특성들을 1:1로 매칭(x축, y축)으로 분포도를 쉽게 출력하여 시각적으로 상관관계를 파악할 수 있습니다.

from pandas.plotting import scatter_matrix
scatter_matrix(raw_data)
plt.show()

결과는 다음과 같습니다.

동일한 특성에 대한 그래프는 아차피 기울기가 1인 선형이므로 히스트그램으로 표시됩니다. ring_cnt를 X축으로 하는 다른 그래프를 살펴보면 height 특성을 제외하고 매우 밀접한 상관관계를 갖고 있음을 알 수 있습니다. 이는 표준 상관계수에서 파악하지 못한 내용입니다.

계층적 샘플링(Stratified Sampling)

계층적 샘플링이란 모집단의 데이터 분포 비율을 유지하면서 데이터를 샘플링(취득)하는 것을 말합니다. 예를들어, 모집단의 남녀 성비가 각각 54%, 46%라고 한다면 이 모집단에서 취득한 샘플 데이터 역시 남녀 성비가 각각 54%, 46%가 되도록 하는 것입니다.

계층적 샘플링의 실제 활용은 학습 데이터와 테스트 데이터 또는 검증 데이터를 일정한 비율로 나눠 구분할때 반드시 적용되어야 합니다. 계층적 샘플링을 적용하지 않고 분할한다고 해도 확률적으로 비율이 유지될 수 있다고 기대하겠지만 이는 상황에 따라 적절한 안정장치가 되지 못합니다.

간단한 데이터셋을 통해 이 계층적 샘플링을 적용하는 내용을 정리하겠습니다. 데이터셋은 아래의 글에서 소개한 전복 데이터입니다.

분석가 관점에서 데이터를 개략적으로 살펴보기

위의 글에서 파악한 전복 데이터를 가져오는 코드는 다음과 같습니다.

import pandas as pd

raw_data = pd.read_csv('./datasets/datasets_1495_2672_abalone.data.csv', 
        names=['sex', 'tall', 'radius', 'height', 'weg1', 'weg2', 'weg3', 'weg4', 'ring_cnt'])

이제 이 데이터셋에서 지름(radius)를 총 5개의 계층으로 나누고, 분포를 시각화해봅니다. 지름을 계층적 샘플링의 기준으로 삼은 이유는 이 지금이 분석하고자 하는 결과에 가장 중요한 의미를 가진다는 어떤 판단(대표적으로 표준상관계수;Standard Correlation Coefficient 분석을 통함)에 의함입니다.

import numpy as np
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt

raw_data["radius_cat"] = pd.cut(raw_data["radius"], bins=[0., 0.13, 0.28, 0.35, 0.56, np.inf], labels=[1,2,3,4,5])
raw_data["radius_cat"].hist()
plt.show()

[0,0.13)을 1로, [0.13,0.28]을 2로, [0.28,0.35)를 3으로, [0.35,0.56)을 4로, [0.56,inf]를 5로 계층화시킨 값을 radius_cat 컬럼에 추가하고, 각 계층별 분포 파악을 위한 히스토그램은 위 코드의 결과로써 다음과 같습니다.

이제 이 데이터셋을 학습 데이터셋과 테스트 데이터셋으로 나누는 코드는 다음과 같습니다.

from sklearn.model_selection import StratifiedShuffleSplit

split = StratifiedShuffleSplit(n_splits=1, test_size=0.2, random_state=42)
for train_index, test_index in split.split(raw_data, raw_data["radius_cat"]):
    strat_train_set = raw_data.loc[train_index]
    strat_test_set = raw_data.loc[test_index]

strat_train_set["radius_cat"].hist()
plt.show()
strat_test_set["radius_cat"].hist()
plt.show()

계층적 샘플링된 학습 데이터셋과 테스트 데이터셋은 각각 strat_train_set, strat_test_set 인데요. 이 두 데이터셋에 대한 분포를 히스트그램으로 표시해 보면 다음과 같습니다.

위의 결과를 보면 시각적으로도 학습 데이터셋과 테스트 데이터셋에서 지름에 대한 컬럼에 대해 원본 데이터셋과 동일 비율로 구성되고 있다는 것을 알 수 있습니다.

앞서 계층적 샘플링을 위해 추가한 radius_cat 필드는 더 이상 필요치 않으므로 다음 코드를 통해 제거할 수 있습니다.

for d in (strat_train_set, strat_test_set):
    d.drop("radius_cat", axis=1, inplace=True)

끝으로 특성간의 상관관계를 조사하기 위한 방법은 아래 글을 참고 하기 바랍니다.

상관관계 조사(Correlation Surveying)

선형 모델을 이용한 n차 다항식의 회귀

선형 모델은 1차 다항식인 직선에 대한 모델 만을 예측할 수 있습니다. 그렇다면 직선이 아닌 곡선, 즉 2차 다항식 이상의 모델을 예측하기 위해서는 선형 모델을 사용할 수 없다고 생각할 수 있습니다. 하지만 생각과는 다르게 선형 모델로도 2차 다항식 이상의 모델도 예측할 수 있는데, 이는 약간의 발상의 전환이 필요합니다. 즉, 선형 모델의 경우 특징 변수가 1차로 다항식으로만 구성되어 있습니다. 만약 x^2와 같은 거듭제곱인 2차식의 경우일때 더 이상 선형 모델이 아니게 되지만, x^2을 z라는 1차 다항식으로 취급하게 되면 선형 모델로도 2차 이상의 다항식도 회귀분석이 가능합니다.

다음의 코드는 3차 다항식에 대한 회귀분석에 대한 코드입니다.

import numpy as np
import matplotlib.pyplot as plt
from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear_model import LinearRegression

np.random.seed(3224)
m = 100
X = 10 * np.random.rand(m, 1) - 5
y = (-0.8 * X**3) + (0.5 * X**2) + (2 * X) - 3 + (np.random.randn(m, 1) * 10)

poly_features = PolynomialFeatures(degree=3, include_bias=False)
X_poly = poly_features.fit_transform(X)

model = LinearRegression()
model.fit(X_poly, y)

X_new = np.linspace(-5, 5, 20).reshape(20, 1)
X_new_poly = poly_features.transform(X_new)
y_new = model.predict(X_new_poly)

plt.plot(X, y, "b.")
plt.plot(X_new, y_new, "r-")
plt.show()

결과는 다음과 같습니다.

코드를 살펴보면, 6-9는 잡음이 섞인 샘플 데이터는 3차 다항식의 형태로 구성합니다. 11-12는 1개의 특성을 2차항과 3차항에 대한 독립적인 특성을 추가로 생성해 줍니다. 즉, 특성값이 2라면 4와 8이라는 특성값이 생성됩니다.

분석가 관점에서 데이터를 개략적으로 살펴보기

수집된 데이터를 활용하여 AI 학습하기에 앞서 가장 먼저 해야 할 것은 수집된 데이터를 개략적으로 살펴보는 일입니다. 이 글은 간단하지만 의미있는 데이터셋을 개략적으로 살펴보는 것에 대한 내용을 살펴봅니다.

간단하지만 의미있는 데이터셋은 Kaggle에서 제공하는 전복(Abalone) 데이터셋이며 다운로드 받은 파일은 CSV 형식으로 파일을 열어 그 일부를 보면 다음과 같습니다.

내용을 보면 일반적인 첫줄에 컬럼명이 아닌 바로 데이터값으로 시작하는 것과 총 9가지의 컬럼값으로 구성되어 있다는 것을 파악할 수 있습니다.

이제 이 데이터를 파이선을 통해 개략적으로 살펴보도록 하겠습니다.

pandas를 사용하여 파일을 불러오는 코드로 시작합니다.

import pandas as pd

raw_data = pd.read_csv('./datasets/datasets_1495_2672_abalone.data.csv', 
        names=['sex', 'tall', 'radius', 'height', 'weg1', 'weg2', 'weg3', 'weg4', 'ring_cnt'])

데이터에 컬럼 정보가 없으므로 names 인자를 통해 컬럼의 의미를 파악할 수 있으면서 식별자로 사용할 수 있는 이름을 지정해 줍니다. 총 9개인데, 각각의 의미는 ‘성별’, ‘키’, ‘지름’, ‘높이’, ‘전체무게’, ‘몸통무게’, ‘내장무게’, ‘껍질무게’, ‘껍질의고리수’입니다.

개략적인 내용 파익으로 이 데이터셋의 실제 내용 중 시작부분을 살펴보는 코드입니다.

print(raw_data.head())

결과는 다음과 같습니다.

다음은 전체적인 데이터의 구성을 살펴보는 코드입니다.

print(raw_data.info())

결과는 다음과 같은데, 총 4177개의 전복 데이터가 있으며 각 컬럼 데이터의 타입과 Null 값이 아닌 데이터의 개수 정보를 파악할 수 있습니다. sex 컬럼의 데이터 타입은 object인데, 이는 문자열이기 때문입니다.

앞서 sex가 문자열인데, 이는 전복의 성별값입니다. I는 유충, M은 수컷, F는 암컷인데, 이 sex에 대한 정보를 좀더 살펴보기 위한 코드입니다.

print(raw_data['sex'].value_counts())

결과는 다음과 같은데, 수컷(M)이 1528개, I가 1342개, F가 1307라는 것을 알 수 있습니다.

다음은 데이터에 대한 간단한 통계를 확인하기 위한 코드입니다.

print(raw_data.describe())

결과는 다음과 같습니다.

각 컬럼에 대한 데이터수, 평균, 편차, 최대값, 최소값, 25%/50%/75%에 대한 백분위수(Percentile)가 제공됩니다.

끝으로 각 컬럼에 대한 히스토그램을 살펴보는 코드입니다.

import matplotlib.pyplot as plt

raw_data.hist(bins=10)
plt.show()

결과는 다음과 같습니다.

GIS 서버, GeoService-Xr이 티맥스의 티베로 DBMS를 지원합니다.

티베로는 티맥스소프트의 자회사인 티맥스데이터(TmaxData)에서 개발한 국산 DBMS로 오라클과 견줄 수 있는 소프트웨어입니다. 오라클과의 호환성이 높아 최소한의 변경으로도 DBMS 전환이 가능하며 오라클의 RAC 기능으로 그간 독점해온 DB 클러스터 기술을 성공시킨 세계에서 두번째 제품이라고 합니다.

이러한 티베로(Tibero)를 GeoService-Xr에서 지원합니다. 티베로에 저장된 공간 데이터에 대한 시각화, 공간 데이터 편집, 다양한 공간 조회 기능 등을 기본으로 제공하며 아래 그림에서의 기능을 티베로와 연계하여 제공할 수 있습니다. GeoService-Xr은 GIS 서버로써의 기본 기능 이외에도 GIS 시스템 및 서비스 구축을 위해 필요한 지오코딩, 10 Parameters 기반의 좌표 변환, 지도 기반 사용자 대화 기능, 대용량 공간 데이터 업로드 등과 같은 기능을 제공하는 미들웨어 서버로 GS인증 1등급 제품입니다.