선형회귀모델에 대한 PyTorch를 이용한 두가지 접근

아래와 같은 식을 회귀하는 모델을 구하는 두가지 접근을 PyTorch로 살펴본다.

    $$y=1+5a+7b$$

즉, 입력값(a, b)에 대한 출력값 y가 100개 주어지고, 이 데이터를 통해 상수항인 1과 계수 5, 7을 구하는 것이 문제다. 물론 y에는 오차가 반영되어 있다. 첫번째 접근은 다음과 같다. 손실함수는 평균최소제곱을, 역전파를 통한 최적값 수렴을 위한 기울기를 구해 반영한 학습률은 0.01을 사용했다. 아래의 코드의 경우 기울기를 구하기 위한 방법을 PyTorch의 역전파를 이용한 것이다.

import torch
from matplotlib import pyplot as plt

weight_true = torch.Tensor([1,5,7]) # y = 1 + 5a + 7b
X = torch.cat([torch.ones(100,1),torch.randn(100,2)], 1)
y = torch.mv(X, weight_true) + torch.randn(100)
weight = torch.randn(3, requires_grad=True)

lr = 0.01

losses = []

for epoch in range(1000):
    weight.grad = None

    y_pred = torch.mv(X, weight)
    loss = torch.mean((y - y_pred)**2)
    loss.backward()

    weight.data = weight.data - lr*weight.grad.data

    losses.append(loss.item())

print(weight)

plt.plot(losses)
plt.show()

두번째 접근은 다음과 같다. 앞서 직접 하나 하나 개발자가 지정했던 것들에 대한 모듈을 사용한 경우이다.

import torch
from torch import nn, optim
from matplotlib import pyplot as plt

weight_true = torch.Tensor([1,5,7]) # y = 1 + 5a + 7b
X = torch.cat([torch.ones(100,1),torch.randn(100,2)], 1)
y = torch.mv(X, weight_true) + torch.randn(100)

net = nn.Linear(in_features=3, out_features=1, bias=False)
optimizer = optim.SGD(net.parameters(), lr=0.01)
loss_fn = nn.MSELoss()

losses = []

for epoch in range(1000):
    optimizer.zero_grad()

    y_pred = net(X)
    loss = loss_fn(y_pred.view_as(y), y)
    loss.backward()

    optimizer.step()

    losses.append(loss.item())

print(net.weight)

plt.plot(losses)
plt.show()

두 경우 모두 실행하면 아래와 같은 손실값에 대한 그래프와 추론된 상수와 두계수 값이 콘솔에 출력된다.

tensor([0.9295, 4.9402, 7.0627], requires_grad=True)

OpenCV의 이미지에 한글 출력하기

사실 OpenCV의 이미지는 numpy의 배열입니다. 그런데 문제는 파이썬에서 OpenCV를 통해 텍스트를 출력할때 한글 출력이 쉽지 않습니다. 해서 한글 출력을 위해 PIL(Python Imaging Library)의 도움을 받을 수 있습니다. 아래의 예제가 바로 그것입니다.

import numpy as np
from PIL import ImageFont, ImageDraw, Image
import cv2

img = np.zeros((200,400,3),np.uint8)

b,g,r,a = 255,255,255,0
fontpath = "fonts/gulim.ttc"
font = ImageFont.truetype(fontpath, 20)
img_pil = Image.fromarray(img)
draw = ImageDraw.Draw(img_pil)
draw.text((60, 70),  "김형준ABC123#GISDeveloper", font=font, fill=(b,g,r,a))

img = np.array(img_pil)
cv2.putText(img,  "by Dip2K", (250,120), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (b,g,r), 1, cv2.LINE_AA)

cv2.imshow("res", img)
cv2.waitKey()
cv2.destroyAllWindows()

7-12번 코드가 PIL을 이용해 한글을 출력하는 코드이고, 14~15번 코드는 OpenCV의 텍스트 출력 코드입니다. 결과는 다음과 같습니다.