Python과 OpenCV – 20 : 히스토그램(Histogram) 1/4

이 글의 원문은 https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_histograms/py_histogram_begins/py_histogram_begins.html#histograms-getting-started 입니다.

아래 그림을 보면..

이미지에 대해 어떤 그래프를 표시하고 있는데, 화소의 강도(Gray 값 또는 하나의 채널에 대한 값)를 갖는 화소의 개수를 각각 X축과 Y축으로 표시하고 있습니다. 대부분의 경우 화소의 강도는 0-255입니다.

히스토그램을 얻는 방법은 Numpy를 이용하는 것과 OpenCV를 이용하는 것이 있습니다. 먼저 OpenCV를 이용한 예제를 보면..

4번째 cv2.calcHist 함수가 이미지에 대한 히스토그램 정보를 얻는데, 이 함수의 첫번째는 입력 이미지의 배열이며 두번째는 히스토그램을 얻을 채널 인덱스, 세번째는 Mask 이미지, 네번째는 X 축 요소(BIN)의 개수이고 다섯번째는 Y 축 요소값의 범위로 하나의 채널에 대한 화소 강도가 0~255이므로 대부분의 경우 [0,256]이 됩니다. 이 함수의 반환값은 256개의 요소를 갖는 배열입니다.

Numpy를 이용하여 히스토그램을 얻는 코드는 다음과 같습니다.

5번째 코드의 np.histogram 함수가 히스토그램을 얻는 함수인데 반환값은 반환값은 256개의 요소를 갖는 배열인 hist와 X축 요소의 값을 나타내는 배열인 bins입니다. 이 함수 이외에도 hist = np.bincount(img.ravel(),minlength=256) 와 같은 더 빠른 함수가 가능합니다.

속도면에서 Numpy보다 OpenCV 방식이 훨씬 빠르므로 OpenCV를 사용하는 것이 좋습니다.

히스토그램 값을 그래프로 표시하기 위한 예제는 다음과 같습니다.

결과는 다음과 같습니다.

BGR 형태와 같이 3개의 채널로 구성된 이미지에 대한 각 채널의 히스토그램도 시각화가 가능한데, 관련된 예제는 다음과 같습니다.

결과는 다음처럼 3개 채널 각각의 히스토그램 결과가 표시됩니다.

지금까지는 히스토그램 분석을 이미지 전체에 대해서 수행했는데, 필요할 경우 이미지의 원하는 영역에 대한 마스크를 지정해 해당 영역에 대한 히스토그램만을 분석할 수 있습니다. 아래의 코드가 예입니다.

결과는 다음과 같습니다.

Python과 OpenCV – 19 : 이미지의 등치선(Contours) – 5/5

이 글은 https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_contours/py_contours_hierarchy/py_contours_hierarchy.html#contours-hierarchy 를 참조로 하였습니다.

먼저 다음과 같은 코드가 있습니다.

8번 코드의 cv2.findContours 함수의 2번째 인자에 따라 그 결과가 달라지는데, 특히 반환값 중 3번째인 hierarchy 값이 크게 달라집니다. hierarchy 값은 추출된 등치선 간의 계층 정보를 나타냅니다. cv2.findContours 함수의 2번째 인자에 따라 어떻게 변경되는지 요약 그림을 언급하는 선에서 정리합니다.

먼저 cv2.RETR_LIST 일 경우, 추출된 등치선의 인덱스 번호에 대한 그림입니다.

그리고 반환된 계층 정보는 다음과 같습니다.

총 9개의 등치선이 추출되었으므로 위와 같이 총 9개의 계층 정보가 반환되는데 위의 각 9개 요소의 순서는 앞선 그림에서 표시된 등치선의 인덱스 순서와 동일합니다. 0부터 시작하고요. 그리고 각 요소는 다시 4개로 구성되는데.. [Next, Previous, First_Child, Parent]와 같습니다. 즉, [다음 등치선의 인덱스, 이전 등치선의 인덱스, 첫번째 자식 등치선의 인덱스, 부모 등치선의 인덱스] 입니다. 위의 계층 정보에 대한 내용은 다음 그림으로 표시될 수 있습니다.

다음은 cv2.RETR_EXTERNAL 인자에 대한 등치선의 인덱스 번호에 대한 그림입니다.

계층 정보는 다음과 같습니다.

위 계층정보의 의미는 다음과 같습니다.

다음은 cv2.RETR_CCOMP 인자에 대한 등치선의 인덱스 번호에 대한 그림입니다.

계층 정보는 다음과 같습니다.

위 계층정보의 의미는 다음과 같고요.

마지막으로 cv2.RETR_TREE 인자에 대한 등치선의 인덱스 번호에 대한 그림입니다.

계층 정보는 다음과 같습니다.

위의 계층정보의 의미를 도식화하면 다음과 같습니다.