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What is Kriging? 
 
Optimal interpolation based on regression against observed z 
values of surrounding data points, weighted according to spatial 
covariance values. 
 
Pronunciation:  Hard “g” (as in Danie Krige) or soft “g” (á là 
Georges Matheron), take your pick 
 
What is interpolation?  Estimation of a variable at an unmeasured 
location from observed values at surrounding locations.  For 
example, estimating porosity at u = (2000 m, 4700 m) based on 
porosity values at nearest six data points in our Zone A data: 

 
 
It would seem reasonable to estimate uφ  by a weighted average 
∑ ααφλ , with weights αλ  given by some decreasing function of the 
distance, αd , from u to data point α . 
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All interpolation algorithms (inverse distance squared, splines, 
radial basis functions, triangulation, etc.) estimate the value at a 
given location as a weighted sum of data values at surrounding 
locations.  Almost all assign weights according to functions that 
give a decreasing weight with increasing separation distance.  
Kriging assigns weights according to a (moderately) data-driven 
weighting function, rather than an arbitrary function, but it is still 
just an interpolation algorithm and will give very similar results to 
others in many cases (Isaaks and Srivastava, 1989).  In particular: 
 
- If the data locations are fairly dense and uniformly distributed 

throughout the study area, you will get fairly good estimates 
regardless of interpolation algorithm. 

- If the data locations fall in a few clusters with large gaps in 
between, you will get unreliable estimates regardless of 
interpolation algorithm. 

- Almost all interpolation algorithms will underestimate the highs 
and overestimate the lows; this is inherent to averaging and if 
an interpolation algorithm didn’t average we wouldn’t 
consider it reasonable 

 
Some advantages of kriging: 
 
- Helps to compensate for the effects of data clustering, assigning 

individual points within a cluster less weight than isolated 
data points (or, treating clusters more like single points) 

- Gives estimate of estimation error (kriging variance), along with 
estimate of the variable, Z, itself (but error map is basically a 
scaled version of a map of distance to nearest data point, so 
not that unique) 

- Availability of estimation error provides basis for stochastic 
simulation of possible realizations of ( )uZ  
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Kriging approach and terminology 
 
Goovaerts, 1997:  “All kriging estimators are but variants of the 
basic linear regression estimator ( )u*Z  defined as 
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with 
 

αuu, :  location vectors for estimation point and one of the 
neighboring data points, indexed by α  

n(u):  number of data points in local neighborhood used for 
estimation of ( )u*Z  

( ) ( ) :, αuu mm   expected values (means) of ( )uZ  and ( )αuZ  
( )uαλ :  kriging weight assigned to datum ( )αuz  for estimation 

location u; same datum will receive different weight for 
different estimation location 

 
( )uZ  is treated as a random field with a trend component, ( )um , 

and a residual component, ( ) ( ) ( )uuu mZR −= .  Kriging estimates 
residual at u as weighted sum of residuals at surrounding data 
points.  Kriging weights, αλ , are derived from covariance function 
or semivariogram, which should characterize residual component.  
Distinction between trend and residual somewhat arbitrary; varies 
with scale. 
 
Development here will follow that of Pierre Goovaerts, 1997, 
Geostatistics for Natural Resources Evaluation, Oxford University 
Press. 
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We will continue working with our example porosity data, 
including looking in detail at results in the six-data-point region 
shown earlier: 
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Basics of Kriging 
 
Again, the basic form of the kriging estimator is 
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The goal is to determine weights, αλ , that minimize the variance of 
the estimator 
 

( ) ( ) ( ){ }uuu ZZE −= *2 Varσ  
 
under the unbiasedness constraint E Z * u( )− Z u( ){ }= 0. 

 
The random field (RF) Z(u) is decomposed into residual and trend 
components, ( ) ( ) ( )uuu mRZ += , with the residual component 
treated as an RF with a stationary mean of 0 and a stationary 
covariance (a function of lag, h, but not of position, u): 
 

E R u( ){ }= 0 

Cov R u( ),R u+ h( ){ }= E R u( )⋅ R u +h( ){ }= CR h( ) 
 
The residual covariance function is generally derived from the 
input semivariogram model, ( ) ( ) ( ) ( )hh0h γγ −=−= SillCC RR .  
Thus the semivariogram we feed to a kriging program should 
represent the residual component of the variable. 
 
The three main kriging variants, simple, ordinary, and kriging with 
a trend, differ in their treatments of the trend component, m(u). 
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Simple Kriging 
 
For simple kriging, we assume that the trend component is a 
constant and known mean, m(u) = m, so that 
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This estimate is automatically unbiased, since ( )[ ] 0E =− mZ αu , so 

that ( )[ ] ( )[ ]uu ZmZ SK EE * == .  The estimation error ( ) ( )uu ZZSK −*  
is a linear combination of random variables representing residuals 
at the data points, αu , and the estimation point, u: 
 

ZSK
* u( )− Z u( )= ZSK
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Using rules for the variance of a linear combination of random 
variables, the error variance is then given by 
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To minimize the error variance, we take the derivative of the above 
expression with respect to each of the kriging weights and set each 
derivative to zero.  This leads to the following system of equations: 
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Because of the constant mean, the covariance function for Z(u) is 
the same as that for the residual component, ( ) ( )hh RCC = , so that 
we can write the simple kriging system directly in terms of ( )hC : 
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This can be written in matrix form as 
 

K λ SK u( )= k  
 
where K SK is the matrix of covariances between data points, with 
elements ( )jiji C uuK −=, , k is the vector of covariances between 
the data points and the estimation point, with elements given by 
ki = C(ui − u), and λ SK u( ) is the vector of simple kriging weights 
for the surrounding data points.  If the covariance model is licit 
(meaning the underlying semivariogram model is licit) and no two 
data points are colocated, then the data covariance matrix is 
positive definite and we can solve for the kriging weights using 
 

λ SK = K−1k  
 
Once we have the kriging weights, we can compute both the 
kriging estimate and the kriging variance, which is given by 
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after substituting the kriging weights into the error variance 
expression above. 
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So what does all this math do?  It finds a set of weights for 
estimating the variable value at the location u from values at a set 
of neighboring data points.  The weight on each data point 
generally decreases with increasing distance to that point, in 
accordance with the decreasing data-to-estimation covariances 
specified in the right-hand vector, k.  However, the set of weights 
is also designed to account for redundancy among the data points, 
represented in the data point-to-data point covariances in the 
matrix K.  Multiplying k by K-1 (on the left) will downweight 
points falling in clusters relative to isolated points at the same 
distance. 
 
We will apply simple kriging to our porosity data, using the 
spherical semivariogram that we fit before, with zero nugget, a sill 
of 0.78, and a range of 4141 m: 
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Since we are using a spherical semivariogram, the covariance 
function is given by 
 

( ) ( ) ( ) ( ) ( )( )341415.041415.1178.00 hhhChC ⋅+⋅−⋅=−= γ  
 
for separation distances, h, up to 4141 m, and 0 beyond that range.  
The plot below shows the elements of the right-hand vector, 

[ ]T37.0,46.0,49.0,32.0,56.0,38.0=k , obtained from plugging the 
data-to-estimation-point distances into this covariance function: 

 
The matrix of distances between the pairs of data points (rounded 
to the nearest meter) is given by 
 
 Point 1 Point 2 Point 3 Point 4 Point 5 Point 6 
Point 1 0 1897 3130 2441 1400 1265 
Point 2 1897 0 1281 1456 1970 2280 
Point 3 3130 1281 0 1523 2800 3206 
Point 4 2441 1456 1523 0 1523 1970 
Point 5 1400 1970 2800 1523 0 447 
Point 6 1265 2280 3206 1970 447 0 
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This translates into a data covariance matrix of 
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(rounded to two decimal places).  Note in particular the relatively 
high correlation between points 5 and 6, separated by 447 m.  The 
resulting vector of kriging weights is 
 

























−

−
==

























−

0266.0
2534.0
2709.0
0205.0

4564.0
1475.0

1

6

5

4

3

2

1

kK

λ
λ
λ
λ
λ
λ

 

 
Notice that data point 6 is assigned a very small weight relative to 
data point 1, even though they are both about the same distance 
from the estimation point and have about the same data-point-to-
estimation-point covariance (k1 = 0.38, k6 = 0.37).  This is because 
data point 6 is effectively “screened” by the nearby data point 5.  
Data points 5 and 6 are fairly strongly correlated with each other 
and 5 has a stronger correlation with the estimation point, so data 
point 6 is effectively ignored.  Note that the covariances and thus 
the kriging weights are determined entirely by the data 
configuration and the covariance model, not the actual data values.  



 12 

The porosities at points 5 and 6 could in fact be very different and 
this would have no influence on the kriging weights. 
 
The mean porosity value for the 85 wells is 14.70%, and the 
porosity values at the six example wells are 13.84%, 12.15%, 
12.87%, 12.68%, 14.41%, and 14.59%.  The estimated residual 
from the mean at u is given by the dot product of the kriging 
weights and the vector of residuals at the data points: 
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Adding the mean back into this estimated residual gives an 
estimated porosity of ( ) ( ) %83.1270.1487.1ˆ =+−=+= mRZ uu .  
Similarly, plugging the kriging weights and the vector k into the 
expression for the estimation variance gives a variance of 0.238 
(squared %).  Given these two pieces of information, we can 
represent the porosity at u = (2000 m, 4700 m) as a normal 
distribution with a mean of 12.83% and a standard deviation of 
0.49%.  Note that, like the kriging weights, the variance estimate 
depends entirely on the data configuration and the covariance 
function, not on the data values themselves.  The estimated kriging 
variance would be the same regardless of whether the actual 
porosity values in the neighborhood were very similar or highly 
variable.  The influence of the data values, through the fitting of 
the semivariogram model, is quite indirect. 
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Here are the simple kriging estimates and standard deviation on a 
100x80 grid with 100-meter spacing using the spherical 
semivariogram model and estimating each grid value from the 16 
nearest neighbor data points (well locations): 
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Some characteristics to note: 
 
Smoothness:  Kriged surface will basically be as smooth as 
possible given the constraints of the data; in many cases, probably 
smoother than the “true” surface. 
 
Bullseyes:  Because kriging averages between data points, local 
extremes will usually be at well locations; bullseyes are inevitable.  
This is true of almost all interpolation algorithms.  Extreme form 
of this is artifact discontinuities at well locations when 
semivariogram model includes significant nugget. 
 
Error map reflects data locations, not data values:  Map of 
kriging standard deviation depends entirely on data configuration 
and covariance function; essentially a map of distance to nearest 
well location scaled by covariance function. 
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Ordinary Kriging 
 
For ordinary kriging, rather than assuming that the mean is 
constant over the entire domain, we assume that it is constant in 
the local neighborhood of each estimation point, that is that 

( ) ( )uu mm =α  for each nearby data value, ( )αuZ , that we are using 
to estimate ( )uZ .  In this case, the kriging estimator can be written 
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and we filter the unknown local mean by requiring that the kriging 
weights sum to 1, leading to an ordinary kriging estimator of 
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In order to minimize the error variance subject to the unit-sum 
constraint on the weights, we actually set up the system minimize 
the error variance plus an additional term involving a Lagrange 
parameter, ( )uOKµ : 
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so that minimization with respect to the Lagrange parameter forces 
the constraint to be obeyed: 
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In this case, the system of equations for the kriging weights turns 
out to be 
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where ( )hRC  is once again the covariance function for the residual 
component of the variable.  In simple kriging, we could equate 

( )hRC  and ( )hC , the covariance function for the variable itself, 
due to the assumption of a constant mean.  That equality does not 
hold here, but in practice the substitution is often made anyway, on 
the assumption that the semivariogram, from which ( )hC  is 
derived, effectively filters the influence of large-scale trends in the 
mean. 
 
In fact, the unit-sum constraint on the weights allows the ordinary 
kriging system to be stated directly in terms of the semivariogram 
(in place of the ( )hRC  values above).  In a sense, ordinary kriging 
is the interpolation approach that follows naturally from a 
semivariogram analysis, since both tools tend to filter trends in the 
mean. 
 
Once the kriging weights (and Lagrange parameter) are obtained, 
the ordinary kriging error variance is given by 
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In matrix terms, the ordinary kriging system is an augmented 
version of the simple kriging system.  For our six-point example it 
would be: 
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to which the solution is 
 





























−

−
==





























−

0288.0
0448.0

2528.0
2595.0
0463.0

4515.0
1274.0

1

6

5

4

3

2

1

kK

µ
λ
λ
λ
λ
λ
λ

 

 
The ordinary kriging estimate at u = (2000 m, 4700 m) turns out to 
be 12.93% with a standard deviation of 0.490%, only slightly 
different from the simple kriging values of 12.83% and 0.488%. 
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Again using 16 nearest neighbors for each estimation point, the 
ordinary kriging porosity estimate and standard deviation look very 
much like those from simple kriging: 
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Kriging with a Trend 
 
Kriging with a trend (the method formerly known as universal 
kriging) is much like ordinary kriging, except that instead of fitting 
just a local mean in the neighborhood of the estimation point, we 
fit a linear or higher-order trend in the (x,y) coordinates of the data 
points.  A local linear (a.k.a., first-order) trend model would be 
given by 
 

( ) ( ) yaxaayxmm 210, ++==u  
 
Including such a model in the kriging system involves the same 
kind of extension as we used for ordinary kriging, with the addition 
of two more Lagrange parameters and two extra columns and rows 
in the K matrix whose (non-zero) elements are the x and y 
coordinates of the data points.  Higher-order trends (quadratic, 
cubic) could be handled in the same way, but in practice it is rare 
to use anything higher than a first-order trend.  Ordinary kriging is 
kriging with a zeroth-order trend model. 
 
If the variable of interest does exhibit a significant trend, a typical 
approach would be to attempt to estimate a “de-trended” 
semivariogram using one of the methods described in the 
semivariogram lecture and then feed this into kriging with a first-
order trend.  However, Goovaerts (1997) warns against this 
approach and instead recommends performing simple kriging of 
the residuals from a global trend (with a constant mean of 0) and 
then adding the kriged residuals back into the global trend. 
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A few of the many topics I have skipped or glossed over 
 
Cokriging:  Kriging using information from one or more 
correlated secondary variables, or multivariate kriging in general.  
Requires development of models for cross-covariance – covariance 
between two different variables as a function of lag. 
 
Indicator Kriging:  Kriging of indicator variables, which 
represent membership in a set of categories.  Used with naturally 
categorical variables like facies or continuous variables that have 
been thresholded into categories (e.g., quartiles, deciles).  
Especially useful for preserving connectedness of high- and low-
permeability regions.  Direct application of kriging to perm will 
almost always wash out extreme values. 
 
Artifact discontinuities:  Kriging using a semivariogram model 
with a significant nugget will create discontinuities, with the 
interpolated surface leaping up or down to grab any data point that 
happens to correspond with a grid node (estimation point).  
Solutions:  factorial kriging (filtering out the nugget component) or 
some other kind of smoothing (as opposed to exact) interpolation, 
such as smoothing splines.  Or, if you really want to do exact 
interpolation, use a semivariogram model without a nugget. 
 
Search algorithm:  The algorithm for selecting neighboring data 
points can have at least as much influence on the estimate as the 
interpolation algorithm itself.  I have used a simple nearest 
neighbor search.  A couple of alternatives include quadrant and 
octant searches, which look for so many data points within a 
certain distance in each quadrant or octant surrounding the data 
point. 


