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What isKriging?

Optimal interpolation based on regression against observed z

values of surrounding data points, weighted according to spatial
covariance val ues.

Pronunciation: Hard“g” (asin Danie Krige) or soft “g” (ala
Georges Matheron), take your pick

What isinterpolation? Estimation of avariable at an unmeasured
location from observed values at surrounding locations. For
example, estimating porosity at u = (2000 m, 4700 m) based on
porosity values at nearest six data pointsin our Zone A data:
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It would seem reasonable to estimate f , by aweighted average
al . f,,withweights |, given by some decreasing function of the
distance, d, , from u to data point a .



All interpolation algorithms (inverse distance squared, splines,
radial basis functions, triangulation, etc.) estimate the value at a
given location as a weighted sum of data values at surrounding
locations. Almost all assign weights according to functions that
give a decreasing weight with increasing separation distance.
Kriging assigns weights according to a (moderately) data-driven
weighting function, rather than an arbitrary function, but it is stil|
just an interpolation algorithm and will give very similar results to
others in many cases (Isaaks and Srivastava, 1989). In particular:

- If the data locations are fairly dense and uniformly distributed
throughout the study area, you will get fairly good estimates
regardless of interpolation algorithm.

- If the data locations fall in afew clusters with large gapsin
between, you will get unreliable estimates regardless of
Interpolation algorithm.

- Almost all interpolation algorithms will underestimate the highs
and overestimate the lows; thisisinherent to averaging and if
an interpolation algorithm didn’t average we wouldn’t
consider it reasonable

Some advantages of kriging:

- Helps to compensate for the effects of data clustering, assigning
individual points within a cluster less weight than isolated
data points (or, treating clusters more like single points)

- Gives estimate of estimation error (kriging variance), along with
estimate of the variable, Z, itself (but error map is basically a
scaled version of amap of distance to nearest data point, so
not that uni que)

- Availability of estimation error provides basis for stochastic
simulation of possible realizations of Z(u)



Kriging approach and ter minology

Goovaerts, 1997: “All kriging estimators are but variants of the
basic linear regression estimator Z” (u) defined as

Z(u)- mlu)="A 1, [2(u,)- mlu,)] -

a=1
with

u,u, : location vectors for estimation point and one of the
neighboring data points, indexed by a

n(u): number of data pointsin local neighborhood used for
estimation of Z"(u)

m(u),m(u, ): expected values (means) of Z(u) and Z(u, )

|, (u): kriging weight assigned to datum z(u,, ) for estimation
location u; same datum will receive different weight for
different estimation location

Z(u) istreated as a random field with a trend component, m(u),
and aresidual component, R(u)=Z(u)- m(u). Kriging estimates
residual at u as weighted sum of residuals at surrounding data
points. Kriging weights, | , , are derived from covariance function
or semivariogram, which should characterize residual component.

Distinction between trend and residual somewhat arbitrary; varies
with scale.

Development here will follow that of Pierre Goovaerts, 1997,
Geostatistics for Natural Resources Evaluation, Oxford University
Press.



We will continue working with our example porosity data,
including looking in detail at results in the six-data-point region

shown earlier;
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Basicsof Kriging
Again, the basic form of the kriging estimator is
. ngu)
VA (U) - m(u) = a—ll a [Z(ua )_ n(ua )]

The goal isto determine weights, | , , that minimize the variance of
the estimator

s E(u)=Varz'(u)- Z(u)]
under the unbiasedness constraint E{Z* (u)- z (u)} =0.

The random field (RF) Z(u) is decomposed into residual and trend
components, Z(u)= R(u)+m(u), with the residual component
treated as an RF with a stationary mean of 0 and a stationary
covariance (afunction of lag, h, but not of position, u):

E{R(u)} =0
Cov{ R(u), R(u + h)} = E{ R(u): R(u + h)} =C, (h)
Theresidual covariance function is generally derived from the
input semivariogram model, C(h)=Cx(0)- g(h)=SiI - g(h).

Thus the semivariogram we feed to a kriging program should
represent the residual component of the variable.

The three main kriging variants, simple, ordinary, and kriging with
atrend, differ in their treatments of the trend component, m(u).



SimpleKriging

For simple kriging, we assume that the trend component is a
constant and known mean, m(u) = m, so that

n(u)

Zg (U)=m+&13(u)[z(u,)- ml.
a=1
This estimate is automatically unbiased, since E[Z(u, )- m|=0, so
that E[Zg (u)] = m=E[Z(u)]. The estimation error Zg (u)- Z(u)
Isalinear combination of random variables representing residuals
at the data points, u, , and the estimation point, u:

Zg (U)- Z(u)= [2;K ()- m]- [Z(u)- m]

= & 1 ¥(U)R(, )- R(u)=R; (U)- RQ)

a=1

Using rules for the variance of alinear combination of random
variables, the error variance is then given by

s 2 (u) = Var{R (u)}+Var{Ry (U)}- 2Cov{Ry (U) Ry (1)}
() n(u

=a al@) ﬁ‘(u)CR(ual - Ub)"'CR(O)- 2”%’)| (1) Ca U, - U)

a=1 b=l

To minimize the error variance, we take the derivative of the above
expression with respect to each of the kriging weights and set each
derivative to zero. Thisleadsto the following system of equations:

>

g)l X(u)Crlu, - uy)=Crlu, -u)  a=1....nu)

b=1



Because of the constant mean, the covariance function for Z(u) is
the same as that for the residual component, C(h) = C(h), so that

we can write the simple kriging system directly interms of C(h):

né)l X(u)Clu, - uy)=Clu, -u) a=1...nu).

b=1

c

This can be written in matrix form as
Kl g (u)=k

where K 4 isthe matrix of covariances between data points, with
elements K, ; =Clu; - u, ), k isthe vector of covariances between

the data points and the estimation point, with elements given by

k; =C(u; - u), and | & (u)isthe vector of simple kriging weights
for the surrounding data points. If the covariance model islicit
(meaning the underlying semivariogram model islicit) and no two
data points are colocated, then the data covariance matrix is
positive definite and we can solve for the kriging weights using

| o =K'k
Once we have the kriging weights, we can compute both the
kriging estimate and the kriging variance, which is given by
n(u)
s &(u)=C(0)- I & (u)k =C(0)- al:*(u)Clu, - u)

a=1

after substituting the kriging weights into the error variance
expression above.



So what does all this math do? It finds a set of weights for
estimating the variable value at the location u from values at a set
of neighboring data points. The weight on each data point
generally decreases with increasing distance to that point, in
accordance with the decreasing data-to-estimation covariances
specified in the right-hand vector, k. However, the set of weights
Is also designed to account for redundancy among the data points,
represented in the data point-to-data point covariances in the
matrix K. Multiplying k by K* (on the left) will downweight
pointsfalling in clusters relative to isolated points at the same
distance.

We will apply simple kriging to our porosity data, using the
spherical semivariogram that we fit before, with zero nugget, asill
of 0.78, and arange of 4141 m:
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Since we are using a spherical semivariogram, the covariance
function is given by

c(h)

C(0)- g(h)=0.7841- 1.5X/4141)+ 0.5X/4141)*)

for separation distances, h, up to 4141 m, and O beyond that range.
The plot below shows the elements of the right-hand vector,

k =[0.38,0.56,0.32,0.49,0.46,0.37] ", obtained from plugging the
data-to-estimation-point distances into this covariance function:
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The matrix of distances between the pairs of data points (rounded
to the nearest meter) is given by

Pointl | Point2 |Point3 |Point4 | Point5 | Point 6
Point 1 0 1897 3130 2441 1400 1265
Point 2 | 1897 0 1281 1456 1970 2280
Point 3 | 3130 1281 0 1523 2800 3206
Point 4 | 2441 1456 1523 0 1523 1970
Point5 | 1400 1970 2800 1523 0 447
Point 6 | 1265 2280 3206 1970 447 0
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This translates into adata covariance matrix of

€.78 0.28
go.zs 0.78
< _80.06 043
0.17 0.39
é0.40 0.27
.43 0.20

(rounded to two decimal places). Notein particular the relatively
high correlation between points 5 and 6, separated by 447 m. The
resulting vector of kriging weightsis
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Notice that data point 6 is assigned avery small weight relative to
data point 1, even though they are both about the same distance
from the estimation point and have about the same data- point-to-
estimation-point covariance (k; = 0.38, ks = 0.37). Thisis because
data point 6 iseffectively “screened” by the nearby data point 5.
Data points 5 and 6 are fairly strongly correlated with each other
and 5 has a stronger correlation with the estimation point, so data
point 6 is effectively ignored. Note that the covariances and thus

_1k
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the kriging weights are determined entirely by the data

configuration and the covariance model, not the actual data values,
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The porosities at points 5 and 6 could in fact be very different and
this would have no influence on the kriging weights.

The mean porosity value for the 85 wellsis 14.70%, and the
porosity values at the six example wells are 13.84%, 12.15%,
12.87%, 12.68%, 14.41%, and 14.59%. The estimated residual
from the mean at u is given by the dot product of the kriging
weights and the vector of residuals at the data points:

R(u)= 2R,
é 0.86(
& 5 el
é‘ 2'550

é-1.83(
=[0.15 046 -002 027 025 -0.03lg _ =-187
& 20

€0.28U
e u
& 0.10(

Adding the mean back into this estimated residual gives an
estimated porosity of Z(u)= R(u)+m=-1.87+14.70=12.83%.
Similarly, plugging the kriging weights and the vector k into the
expression for the estimation variance gives a variance of 0.238
(squared %). Given these two pieces of information, we can
represent the porosity at u = (2000 m, 4700 m) as a normal
distribution with a mean of 12.83% and a standard deviation of
0.49%. Notethat, like the kriging weights, the variance estimate
depends entirely on the data configuration and the covariance
function, not on the data values themselves. The estimated kriging
variance would be the same regardless of whether the actual
porosity values in the neighborhood were very similar or highly
variable. Theinfluence of the data values, through the fitting of
the semivariogram model, is quite indirect.
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Here are the simple kriging estimates and standard deviation on a
100x80 grid with 100-meter spacing using the spherical
semivariogram model and estimating each grid value from the 16
nearest neighbor data points (well locations):

Estimated Porosity (%) Using Simple Kriging
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Some characteristics to note;

Smoothness. Kriged surface will basically be as smooth as
possible given the constraints of the data; in many cases, probably
smoother than the “true” surface.

Bullseyes Because kriging averages between data points, local
extremes will usually be at well locations; bullseyes are inevitable.
Thisistrue of amost al interpolation algorithms. Extreme form
of thisisartifact discontinuities at well locations when
semivariogram model includes significant nugget.

Error map reflects data locations, not data values Map of
kriging standard deviation depends entirely on data configuration
and covariance function; essentially a map of distance to nearest
well location scaled by covariance function.
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Ordinary Kriging

For ordinary kriging, rather than assuming that the mean is
constant over the entire domain, we assume that it is constant in
the local neighborhood of each estimation point, that is that

m(u, ) =m(u) for each nearby data value, Z(u, ), that we are using
to estimate Z(u). In this case, the kriging estimator can be written

Z(u)=rmiu)+ 51, ()[2(u, ) - m{u)]

a=1
n(u)

= a1, (u)z(,) +g- al, () grlu)

a=1

and we filter the unknown local mean by requiring that the kriging
weights sum to 1, leading to an ordinary kriging estimator of

i n(u) n(u)
Zo W)= a12(u)z(u,) with &a1X(u) =1.

a=1 a=1

In order to minimize the error variance subject to the unit-sum
constraint on the weights, we actually set up the system minimize
the error variance plus an additional term involving a Lagrange
parameter, My, (u):

L=s )+ 2m G- B1.0) ¢

a=1

so that minimization with respect to the Lagrange parameter forces
the constraint to be obeyed:

(
=90 30, (u) =0
29m aazla(U)
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In this case, the system of equations for the kriging weights turns
out to be

R 0 () Calu, - Uy )+ M (0)=Calt, -u) @ =L...n(u)

b=1

Inu)
Falf(u) =1
1 b=1

where C(h) is once again the covariance function for the residual
component of the variable. In simple kriging, we could equate
Cg(h) and C(h), the covariance function for the variableitself,
due to the assumption of a constant mean. That equality does not
hold here, but in practice the substitution is often made anyway, on
the assumption that the semivariogram, from which C(h) is
derived, effectively filters the influence of large-scale trendsin the
mean.

In fact, the unit-sum constraint on the weights allows the ordinary
Kriging system to be stated directly in terms of the semivariogram
(in place of the C(h) values above). In asense, ordinary kriging
Is the interpolation approach that follows naturally from a
semivariogram analysis, since both tools tend to filter trends in the
mean.

Once the kriging weights (and Lagrange parameter) are obtained,
the ordinary kriging error variance is given by

s 2 ()=C(0)- A1 % (u)Clu, - u)- myc(u).

a=1
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In matrix terms, the ordinary kriging system is an augmented
version of the simple kriging system. For our six-point example it
would be;

€.78 0.28 0.06 0.17 0.40 0.43 1.00uél,u €0.38u

928 078 043 039 027 020 1.0099,Y S5l
e ue “u € u

€0.06 043 0.78 037 011 0.06 1.00ué ,u €0.320

Ve

ug u_é, ,,u
.17 039 037 078 037 027 10044 ,5=049;

€40 027 011 037 078 065 1.0008 U 80.460
043 020 006 027 065 078 1.004d 5 &0.37;

€.00 100 1.00 1.00 100 1.00 O0.00Pgmf E1.00¢

to which the solution is

d .0 6 0.1274 |
.Y € 0.4515 Y
€ “u € u
d ;0 & 0.0463

u_, -y _¢€ u
d 1g=K k=g 02595
4.0 €0.2528 U

u € u
g 6@ é- 0.0448@
emgl € 0.0288 ¢

The ordinary kriging estimate at u = (2000 m, 4700 m) turns out to
be 12.93% with a standard deviation of 0.490%, only slightly
different from the simple kriging values of 12.83% and 0.488%.
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Again using 16 nearest neighbors for each estimation point, the
ordinary kriging porosity estimate and standard deviation ook very
much like those from simple kriging:

Estimated Porosity (%) Using Ordinary Kriging
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Kriging with a Trend

Kriging with atrend (the method formerly known as universal
kriging) is much like ordinary kriging, except that instead of fitting
just alocal mean in the neighborhood of the estimation point, we
fit alinear or higher-order trend in the (X,y) coordinates of the data
points. A local linear (a.k.a., first-order) trend model would be
given by

m(u)=m(x, y) = a, + a,x+a,y

Including such amodel in the kriging system involves the same
kind of extension aswe used for ordinary kriging, with the addition
of two more Lagrange parameters and two extra columns and rows
in the K matrix whose (non-zero) elements arethe x and y
coordinates of the data points. Higher-order trends (quadratic,
cubic) could be handled in the same way, but in practiceitisrare
to use anything higher than afirst-order trend. Ordinary krigingis
kriging with a zeroth-order trend model.

If the variable of interest does exhibit a significant trend, atypical
approach would be to attempt to estimate a “de-trended”
semivariogram using one of the methods described in the
semivariogram lecture and then feed thisinto kriging with afirst-
order trend. However, Goovaerts (1997) warns against this
approach and instead recommends performing simple kriging of
the residuals from a global trend (with a constant mean of 0) and
then adding the kriged residuals back into the global trend.
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A few of the many topics| have skipped or glossed over

Cokriging: Kriging using information from one or more
correlated secondary variables, or multivariate kriging in general.
Requires development of models for cross-covariance — covariance
between two different variables as a function of lag.

Indicator Kriging: Kriging of indicator variables, which
represent membership in a set of categories. Used with naturally
categorical variables like facies or continuous variables that have
been thresholded into categories (e.g., quartiles, deciles).
Especially useful for preserving connectedness of high- and low-
permeability regions. Direct application of kriging to perm will
almost always wash out extreme vaues.

Artifact discontinuities Kriging using a semivariogram model
with a significant nugget will create discontinuities, with the
interpolated surface leaping up or down to grab any data point that
happens to correspond with a grid node (estimation point).
Solutions: factorial krigng (filtering out the nugget component) or
some other kind of smoothing (as opposed to exact) interpolation,
such as smoothing splines. Or, if you really want to do exact
Interpolation, use a semivariogram model without anugget.

Search algorithm: The algorithm for selecting neighboring data
points can have at least as much influence on the estimate as the
interpolation algorithm itself. | have used a simple nearest
neighbor search. A couple of alternatives include quadrant and
octant searches, which look for so many data points within a
certain distance in each quadrant or octant surrounding the data
point.
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